

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 3-5 May 2015

Sheet (9)... AC and DC transient (Laplace)

1. In the series RC circuit of Fig. 1, the capacitor has an initial charge q= 2500×10^{-6} coulomb. At t = 0, the switch is closed and a constant voltage source V = 100 volts is applied to the circuit. Use Laplace transform method to find the current.

Figure 1

2. In the RL circuit shown in Fig. 2 below, the switch is in position 1 long enough to establish steady state conditions and at t = is switched to position 2. Find the resulting current.

Figure 2

3. In the series RL circuit of Fig. 3 an exponential voltage $v=50e^{-100t}$ is applied by closing the switch at t=0. Find the resulting current.

Figure 3

Dr. Basem ElHalawany

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 3-5 May 2015

4. The series RC circuit of Fig. 4 has a sinusoidal voltage source $v = 180 \sin (2000t + \emptyset)$ and an initial charge on the capacitor q= 1250 $\times 10^{-6}$ coulomb with polarity as shown. Determine the current if the switch is closed at a time corresponding to $\emptyset = 90^{\circ}$.

Figure 4

5. In the series RL circuit of Fig. 5 the sinusoidal source is given by $v = 100 \sin (500t + \emptyset)$. Determine the resulting current if the switch is closed when $\emptyset = 0$.

Figure 5

6. In the series RLC circuit shown in Fig. 6, there is no initial charge on the capacitor. If the switch is closed at t = 0, determine the resulting current.

Figure 6

Dr. Basem ElHalawany

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 3-5 May 2015

7. In the two mesh network of Fig. 7, find the currents which result when the switch is closed.

Figure 7

8. In the two-mesh network shown in Fig. 8 there is no initial charge on the capacitor. Find the mesh currents i1 and i2 which result when the switch is closed at t = 0.

Figure 8

Good Luck

Electrical Circuits (2)

Benha University Faculty of Engineering Shoubra

Electrical Eng. Dept. 1st year communication 3-5 May 2015

Г	f(t)	F(s)
1.	$A t \ge 0$	<u>A</u> s
2.	$At t \ge 0$	$\frac{A}{s^2}$
3.	e-at	$\frac{1}{s+a}$
4.	te^{-at}	$\frac{1}{(\mathbf{s}+a)^2}$
5.	sin ωt	$\frac{\omega}{\mathrm{s}^2+\omega^2}$
6.	cos wt	$\frac{s}{s^2 + \omega^2}$
7.	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
8.	$\cos \left(\omega t + \theta \right)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
9.	$e^{-at}\sin\omega t$	$\frac{\omega}{(\mathbf{s}+\alpha)^2+\omega^2}$
10.	$e^{-at}\cos \omega t$	$\frac{(\mathbf{s}+a)}{(\mathbf{s}+a)^2+\omega^2}$
11.	$\sinh \omega t$	$\frac{\omega}{s^2 - \omega^2}$
12.	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2}$
13.	df/dt	s F(s) - f(0+)
14.	$\int f(t) dt$	$\frac{\mathbf{F}(\mathbf{s})}{\mathbf{s}} + \frac{f^{-1}(0+)}{\mathbf{s}}$
15.	$f(t-t_1)$	e ^{−t} i ^s F(s)
16.	$f_1(t) + f_2(t)$	$\mathbf{F}_1(\mathbf{s}) + \mathbf{F}_2(\mathbf{s})$

LAPLACE TRANSFORMS