Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 3-5 May 2015

Sheet (9)... AC and DC transient (Laplace)

1. In the series RC circuit of Fig. 1, the capacitor has an initial charge $q=2500 \times 10^{-6}$ coulomb. At $t=0$, the switch is closed and a constant voltage source $V=100$ volts is applied to the circuit. Use Laplace transform method to find the current.

Figure 1
2. In the RL circuit shown in Fig. 2 below, the switch is in position 1 long enough to establish steady state conditions and at $\dagger=$ is switched to position 2. Find the resulting current.

Figure 2
3. In the series RL circuit of Fig. 3 an exponential voltage $v=50 e^{-100 t}$ is applied by closing the switch at $t=0$. Find the resulting current.

Figure 3

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 3-5 May 2015
4. The series RC circuit of Fig. 4 has a sinusoidal voltage source $v=180 \sin (2000 t+\varnothing)$ and an initial charge on the capacitor $q=$ 1250×10^{-6} coulomb with polarity as shown. Determine the current if the switch is closed at a time corresponding to $\varnothing=90^{\circ}$.

Figure 4
5. In the series RL circuit of Fig. 5 the sinusoidal source is given by $v=100 \sin (500 t+\varnothing)$. Determine the resulting current if the switch is closed when $\varnothing=0$.

Figure 5
6. In the series RLC circuit shown in Fig. 6, there is no initial charge on the capacitor. If the switch is closed at $t=0$, determine the resulting current.

Figure 6

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 3-5 May 2015
7. In the two mesh network of Fig. 7, find the currents which result when the switch is closed.

Figure 7
8. In the two-mesh network shown in Fig. 8 there is no initial charge on the capacitor. Find the mesh currents i1 and i2 which result when the switch is closed $a t \dagger=0$.

Figure 8

Good Luck

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 3-5 May 2015

LAPLACE TRANSFORMS

	$f(t)$	F(s)
1.	$A \quad t \geqslant 0$	$\frac{A}{s}$
2.	At $\quad t \geqslant 0$	$\frac{A}{s^{2}}$
3.	$e^{-a t}$	$\frac{1}{s+a}$
4.	$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$
5.	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
6.	$\cos \omega t$	$\frac{\mathrm{s}}{\mathbf{s}^{2}+\omega^{2}}$
7.	$\sin (\omega t+\theta)$	$\frac{s \sin \theta+\omega \cos \theta}{s^{2}+\omega^{2}}$
8.	$\boldsymbol{\operatorname { c o s }}(\omega t+\theta)$	$\frac{s \cos \theta-\omega \sin \theta}{\mathbf{s}^{2}+\omega^{2}}$
9.	$e^{-a t} \sin \omega t$	$\frac{\omega}{(\mathrm{s}+\alpha)^{2}+\omega^{2}}$
10.	$e^{-a t} \cos \omega t$	$\frac{(s+a)}{(s+a)^{2}+\omega^{2}}$
11.	$\sinh \omega t$	$\frac{\omega}{s^{2}-\omega^{2}}$
12.	$\cosh \omega t$	$\frac{s}{s^{2}-\omega^{2}}$
13.	$d f / d t$	$\mathbf{s F}(\mathbf{s})-f(0+)$
14.	$\int f(t) d t$	$\frac{\mathbf{F}(\mathrm{s})}{\mathrm{s}}+\frac{f^{-1}(0+)}{\mathrm{s}}$
15.	$f\left(t-t_{1}\right)$	$e^{-t_{1} \mathbf{s} \mathbf{F}(\mathbf{s})}$
16.	$f_{1}(t)+f_{2}(t)$	$\mathrm{F}_{1}(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~s})$

